The Biogas Production from Brewery Waste: A Case Study for Tanzania Breweries Company Limited (Arusha-Branch)

Wenceslaus Pantaleo Missana a,b*, Peter Paul Mashingo a and Siza Tumbo c

a Department of Automotive Engineering, Arusha Technical College (ATC), P.O.Box 296, Arusha, Tanzania.
b Department of Materials and Energy Science and Engineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania.
c Ministry of Agriculture, P.O.Box 2182, Dodoma, Tanzania.

Author’s contribution

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JENRR/2022/v10i130246

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/77449

Received 01 October 2021
Accepted 03 December 2021
Published 08 January 2022

ABSTRACT

Beverage and Food processing industries are extremely large consumers of energy and bio-waste producer worldwide. Due to its high concentration of organic compounds, which imposes a high biochemical oxygen to the waste's breakdown, disposal from these companies in the environment increases the risk of inconvenience to the ecosystem. In this context, the brewing industry's production phases included the fermentation of vegetable feedstock such as barley malt, hops, and grains that produces a variety of by-products. Fermented malts, hops, yeast and water which used for the beer production caused waste materials that are disposed as organic wastes. Experimentally the waste as anaerobic digestion feed was assessed. The idea was to support the environment by utilizing alternative energy using the bio-waste from the brewery industry. Samples from the Tanzanian Breweries Company Limited (TBL) Arusha branch were taken to the CAMARTEC biogas digester. The wastes in form of sludge were investigated for anaerobic digestion. The findings of this study showed that waste from the brewing sector may be converted into environmentally acceptable solutions to be used as a biogas.

*Corresponding author: E-mail: missanaw@nm-aist.ac.com;
1. INTRODUCTION

The reliance of fossil fuels as the primary source of energy has resulted in a number of economic and environmental issues [1]. Traditional energy sources such as firewood, animal dung, crop wastes, and paraffin are used by many rural communities in underdeveloped countries but these traditional methods are often expensive and not eco-friendly [2]. Biogas is a combustible gas composed primarily of methane, carbon dioxide, and trace gases. It is an environmentally friendly and alternative energy source that can replace coal and firewood. Biogas production via anaerobic digestion has significant advantages over other forms of bio-energy because of the reduction in carbon dioxide and other emissions [3]. An investigation into the utilization of anaerobic digestion in the treatment of industrial waste was conducted in this study, although it still requires creative technology and development [4].

Biogas technology is the anaerobic digestion of organic matter under specific temperature, pH, C/N ratio, and other conditions to produce combustible gas and value-added fertilizer. Biogas is the gas produced during anaerobic digestion. It consists of approximately 65% of methane (CH4), 35% of CO2 and traces of N2, H2, H2S, O2 and ammonia (NH3) [5].

The oldest and most-well-known beverage sector is brewing. Beer production and consumption are major socioeconomic factors since it is a popular beverage that promotes social interaction. Global annual beer output was 1.91 billion h (hecto) L in 2019. Beer is made by combining hops, malt, sugar, and water extracts, followed by yeast fermentation [6].

Biogas generation is based on the decomposition of organic waste and is considered an environmentally favorable technology. Microorganisms are important in the creation of enzymes that break down biodegradable waste components (such as cellulose, lignin, starch, and complex polysaccharides, proteins, and lipids) into simple nutrients like sugars, amino acids, and fatty acids. A major portion of the waste components is transformed into metabolic gases and other minor impurities as the microorganisms develop and multiply. Methane (a significant component of biogas) is produced mostly in anaerobic environments [7].

Anaerobic Digestion (AD) is a biological process that includes a consortium of microorganisms treating and stabilizing organic matter in the absence of oxygen that can be considered into four major steps: Hydrolysis, Acidogenesis, Acetogenesis, and Methanogenesis [8]. The hydrolysis stage is an extra-cellular process in which polymeric compounds organic matters are broken down into soluble oligomers and monomers. Hydrolysis of these compounds into smaller units is the first step in the AD process. Since fermentative bacteria seem unable to directly adsorb complex organic polymers into their cells. Hydrolysis is a necessary step before acidogenesis [9]. Hydrolysis is often considered as rate-limiting step in the AD of particulate feedstock such as lignocellulosic biomass, because digestible hemicelluloses are covered as heart of insoluble lignin and because of the crystalline nature of cellulose [10].

AD is becoming more widely recognized as a cost-effective method of converting organic matter, particularly highly refractory distillery/brewery waste streams, into biogas, which can significantly improve the industry's energy balance and economics. Because the traditional waste disposal method for distilleries and breweries was primarily animal source of nutrients [11].

Acidogenesis phase includes sugars, long chain fatty acids (LCFAs), glycerol, and amino acids that are used by fermentative microorganisms to produce carboxylic acids such as acetic acid, propionic acid, butyric acid, and other short chain volatile fatty acids [12]. Glycerol, on the other hand, is converted into acetate by acidogenesis, while LCFAs are converted into acetate and H2 by acetogenic bacteria via the -oxidation process [13]. Acidogenesis is the most rapid reaction in the anaerobic food chain. At low hydrogen pressure and high pH, acetate is discovered to be the primary fermentation product. Acidogenesis is frequently a faster step in the anaerobic transformation of complex organic matter in liquid phase digestions [14].

The degradation of monosaccharides (glucose) can manifest in different pathways which leads to the emergence of different products such as volatile fatty acids (VFA), as shown in Table 1.

The acetogenesis stage is crucial for the successful production of biogas. In contrast to fermentative bacteria, acetogens are obligatory...
ich are strict obligate anaerobes. [15]. Acetogens are slow-growing organisms that are sensitive to changes in organic loads and environmental conditions, requiring lengthy reaction times. Acetogenic bacteria can be divided into hydrogen producing acetogenic bacteria and homoacetogenic production bacteria [16]. In anaerobic digestion, acetogenic bacteria convert VFAs and alcohols into acetate, hydrogen, and carbon dioxide, which are then used by methanogens to fuel their metabolism [17].

Propionate is mostly converted into acetate, carbon dioxide, and hydrogen during aceticogenesis via the methylmalonyl-CoA route. Table 2 shows examples of VFA degradation reactions.

In methanogenesis stage, the fermentation products such as acetate and H₂CO₂ are converted to CH₄ and CO₂ by methanogenic archaea which are strict obligate anaerobes. Other methanogens could also grow on one carbon compounds the same as formate, methanol, and methylamine. Two groups of methanogens are involved in this process, the acetoclastic methanogens which are responsible for splitting acetate into methane and carbon dioxide [17]. Normally, Methanoseta and Methanosarcina, dominates in anaerobic digesters depending upon the type of waste and digester [18]. The second group is the hydrogenotrophic methanogens that hydrogen and carbon dioxide produced methane from H₂CO₂, whereas only a few species of methanogens are believed to be capable of utilizing acetate as a substrate [19]. However, estimated that stoichiometric ratio about 70% of the methane formed in anaerobic digesters which derived via the acetate pathway. The hydrogen pathway is more energy yielding than the acetate pathway, and is normally not rate limiting [20]. Table 3 shows the reactions that occur throughout the methanogenesis stage.

The factors affecting anaerobic digestion processes include environmental factors such as temperature, VFAs, pH and alkalinity, inhibitors/nutrient and water content [21]. Biological and anaerobic processes are affected by temperature. This includes the physical-chemical properties of all components in the digester as well as the thermodynamic and kinetic behaviour of the biological processes. The AD process can occur at a range of temperatures, including psychophilic (11-25 °C), mesophilic (35-40 °C), thermophilic (50-55 °C),

Table 1. Estimated of the different products from glucose degradation during acidogenesis process

<table>
<thead>
<tr>
<th>S/No.</th>
<th>Products</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acetate</td>
<td>C₅H₁₀O₄ + 2H₂O → 2CH₃COOH + 2CO₂ + 4H₂</td>
</tr>
<tr>
<td>2</td>
<td>Propionate+Cetate</td>
<td>3C₅H₁₀O₄ → 4CH₃CH₂COOCH + 2CH₃COOH + 2CO₂ + 2H₂ O</td>
</tr>
<tr>
<td>3</td>
<td>Butyrate</td>
<td>C₆H₁₂O₆ → CH₃CH₂CH₂COOH + 2CO₂ + 2H₂</td>
</tr>
<tr>
<td>4</td>
<td>Lactate</td>
<td>C₆H₁₂O₆ → 2CH₃ CHOHOOCOH</td>
</tr>
<tr>
<td>5</td>
<td>Ethanol</td>
<td>C₆H₁₂O₆ → 2CH₃CH₂OH + 2CO₂</td>
</tr>
</tbody>
</table>

Table 2. Fatty acids degradation reactions

<table>
<thead>
<tr>
<th>S/No.</th>
<th>Substrate</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Propionate</td>
<td>CH₃CH₂COOH + 2H₂O → CH₃COOH + CO₂ + 2H₂</td>
</tr>
<tr>
<td>2</td>
<td>η-butyrate</td>
<td>CH₃CH₂COOH + 2H₂O → 2CH₃COOH + 2H₂</td>
</tr>
<tr>
<td>3</td>
<td>i-butyrate</td>
<td>CH₃(CHCH₃) COOH + 2H₂O → CH₃COOH + 2H₂</td>
</tr>
<tr>
<td>4</td>
<td>η-valerate</td>
<td>CH₃CH₂CH₂CH₂COOH + 2H₂O → CH₃COOH + CH₃ + CH₃CH₂COOH + 2H₂</td>
</tr>
<tr>
<td>5</td>
<td>i-valerate</td>
<td>CH₂(CHCH₂) CH₂COOH + CO₂ + 2H₂O → 3CH₂COOH + H₂</td>
</tr>
</tbody>
</table>

Sources: Pind et al., (2003)

Table 3. Reactions related to methanogenesis stage

<table>
<thead>
<tr>
<th>S/No.</th>
<th>Substrate</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acetoclastic Methanogenesis</td>
<td>CH₂COOH → CH₄ + CO₂</td>
</tr>
<tr>
<td>2</td>
<td>Hydrogenotrophic Methanogenesis</td>
<td>4H₂ + CO₂ → CH₄ + 2H₂O</td>
</tr>
<tr>
<td>3</td>
<td>Acetate Oxidation</td>
<td>CH₃COOH + 2H₂O → 4H₂ + 2CO₂</td>
</tr>
<tr>
<td>4</td>
<td>Homoacetogenesis</td>
<td>4H₂ + CO₂ → CH₃COOH + 2H₂O</td>
</tr>
</tbody>
</table>
and hyperthermophilic (55 °C), with mesophilic and thermophilic drawing the most attention. [22]. During the biogas production process, there is a direct relationship between the process, temperature, and hydraulic retention time. [23]. Stability of the temperature is crucial for AD process. In practice, the temperature of process is selected according to the type of feedstock used. The AD process functions within a pH range from 6.5 to 8 where in the microbial consortium it can replicate and so degrade the available substrates. The pH value in the AD process increases when there is ammonium accumulation [24]. VFAs are precursors for methane production but accumulation may inhibit methanogenesis as a result of the drop in pH [25].

2. MATERIALS AND METHODS

2.1 Study Location Description

The study was conducted at Centre for Agricultural Mechanization and Rural Technology (CAMARTEC) research centre in njiro road Arusha city, Tanzania. The Centre is responsible for interpreting Government’s policies of applied research and development in Agricultural Mechanization and Rural Technologies into programs aimed at improving the agricultural production and quality of rural livelihood.

2.2 General Procedures

The biogas digester was fed brewery yeast material for this study. The digester initially contained cow dung, but after 60 days, the cow dung was replaced with yeast, and the hydraulic retention period of 60 days was chosen because the substrates contain significantly more solid material and nitrogen. The medium consistency of brewery residues was (20%) solid content and 80% water. The test was conducted in March 2018.

2.3 Feed Materials

The yeast from Tanzania Breweries Limited Company’s Arusha branch was used as the feed material. Calories, protein, carbohydrate, dietary fiber, fat, potassium, phosphorus, calcium, sodium, niacin, iron, thiamine, riboflavin, and chromium are all found in yeast.

2.2 Biogas Digester

The biogas digester had a storage capacity of 1.8 m³ of biogas. The digester is divided into five major sections: the inlet section, where the feed stock is introduced to the digester, the bio-digester section, where the entire process of yeast digestion occurs, and the bio-digester, which contains four processes: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. The third component is the expansion chamber, whose primary function is to preserve materials from the digester while also assisting in the balance of the digester's pressure. The fourth component was the outlet, which was responsible for releasing the digested matter. The construction of biodigester is estimated in terms of local materials which is affordable for low in come society as shown in Fig.1.

2.3 Experimental Setup

As illustrated in (Fig. 2.) the experimental setup included a bio-digester, a pressure gauge for measuring and recording biogas pressure linked inline to the gas flow meter, and another pressure gauge for measuring the pressure flow directed to the two (2) stoves to test the biogas’s operating performance.

2.4 Instrumentation and Measurements

i. Several instruments were utilized to gather various measurements during the experiment, as follows: Gas Flow Meter was used to determine the amount of biogas utilized daily in the kitchen through stove sets.

ii. Hydrogen Sulphide Analyzer was used to determine the level of sulphur in the system (biogas).

iii. pH Meter was used to check out the pH of inlet feedstock and the outlet bio-slurry.

iv. Pressure Gauge was used to determine the pressure of the gas produced within the system.

v. Thermometer was used to determine the inside and ambient temperature required to support anaerobic processes.

vi. Methane Analyzer was used to determine methane content of biogas.
2.5 Data Collection

The parameters such as gas pressure in Kilopascal (kPa), volume of biogas utilized daily in litres, temperature in °C, methane concentration in parts per million (ppm), hydrogen sulphide in ppm and pH was measured and recorded every day. Feeding rate was 120 litres of brewery yeast at interval of three days, this was done to check the possibility of yeast
consistence in biogas production that was proved to be viable. Data were collected using various instruments and devices such as a gas flow meter, hydrogen sulphide analyzer, pH meter, pressure gauge, thermometer, and methene analyzer. Data collected on a daily basis included pressure, methane content, pH of the inlet and outlet, sulphur content in the gas, Biogas produced and consumed daily, and the amount of slurry overflew, which averaged 80 litres per 3-days.

3. RESULTS AND DISCUSSION

3.1 Data Analysis

The collected data has been analyzed daily to check for any changes, and the methane level in yeast as a feedstock has reached up to 90%. The digester's specific size reached 6 m3, and its maximum pressure was 8.5 kPa, which was recorded every morning, indicating a good flow in the digester. The sulphur level in the biogas content was 135 kPa, and the temperature ranged between 20 and 30°C. The biogas quality has improved, with low levels of other gases such as carbon dioxide and nitrogen. Because the amount of biogas generated was very high, roughly 1000 litres during 4 hours, the user can use up to 1000 litres of biogas in the kitchen and wait for comparable amount of biogas to be produced in this digester for the following 4 hours.

3.2 Biogas Production and Its Constituents

Yeast has proven to be an excellent feedstock in this investigation. The biogas output, which grew to 9 kPa, as well as the methane content of the biogas, which increased to 90% of the total biogas, have both improved significantly. There has also been a shift in the pH of the feedstock and the pH of the slurry produced after fermentation, indicating higher purity of biogas produced by yeast, where the feedstock (4.5-6) is more acidic and the slurry produced during the process is more basic, but the pH test has been moved from 8.3 to neutral 7.9 as shown in Fig. 3.

3.3 Effects of Temperature Variation to the Pressure

The temperature has no effect on the pressure that is created; it has been observed that the temperature of the digester and the temperature of the surrounding area are always the same. The temperature had no effect on the biogas output in the digester, as shown in Fig. 4.

Fig. 3. Methene Rise Corresponding to pH Inlet and Outlet
3.4 Utilization of Biogas from Yeast for Cooking

The drop in pressure while using the biogas by the stove was observed, revealing that the stove consumed up to 300 litres of biogas in 30 minutes and the pressure dropped from 9 kPa to 2 kPa, resulting in a cooking time of 180 minutes and a total of 1800 litres of biogas consumed, which is a normal circumstance depending on the stove control and much biogas was used when allowed to flow, while it was not properly used and occurs when the knob is full, which is a normal circumstance as shown in (Fig. 5.).

When the stove was opened to half way the biogas utilized was less and more time was available for cooking as shown in Fig. 6.

3.5 Drops and Build up of Pressure

In the case of biogas utilization, pressure drops down and builds up, the observation has shown that the biogas can be utilized for a specific period of time for a pressure drop to nearly 1.5 kPa and then it take up to 4 hours for pressure to build up again to its maximum level of 8.5 kPa. The trend has been demonstrated in various experiments, as shown in Fig. 7.

3.6 Biogas Stoves

Biogas stoves are designed at low cost using local materials which is available locally. The biogas stoves as shown in Fig. 8. (a) and (b), are installed in the kitchen at the household level for cooking purposes and are designed solely for biogas utilization as shown in Fig. 8.

![Fig. 4. Effects of Temperature Variation to the Pressure in the digester](image)
Table 4. Shows an average of 8 days of data from experiments on various knob openings, corresponding to time, volume, and initial pressure read during morning and afternoon

<table>
<thead>
<tr>
<th>Knob opening</th>
<th>Morning</th>
<th>Afternoon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial Pressure (kPa)</td>
<td>Volume used (litres)</td>
</tr>
<tr>
<td>Full</td>
<td>8.7</td>
<td>921</td>
</tr>
<tr>
<td>Half</td>
<td>8.7</td>
<td>1169</td>
</tr>
<tr>
<td>Min</td>
<td>8.7</td>
<td>935</td>
</tr>
</tbody>
</table>
3.7 Feeding Yeast

Feeding frequency was managed to ensure yeast consistency and sustainability, and the findings revealed that you can feed the digester once for three days without feeding back while maintaining the rate of biogas production. As shown in Table 4.

3.8 Yeast Feeding Frequency

The three-day feeding trend has not resulted in any major changes in the number of hours used in relation to the manner knobs were opened, as shown in Fig.9.

3.9 Pressure Created during Feeding Intervals

The pressure created over the course of three days did not exhibit much variation. In three experiments of knob opening (full, half, and min), there was almost 8.5 kPa readings. This proves that you may feed the digester every three days and get the same pressure every day, as illustrated in Fig. 10.
4. CONCLUSION

In the case of biogas production, yeast as a feedstock has shown a lot of promise. The biogas quality has improved, with low levels of other gases such as carbon dioxide and nitrogen compared to the biogas from the cow dung. Because the amount of biogas generated was very high, roughly 1000 litres during 4 hours. One of the industries that contributes to the production of these wastes is the brewing industry. If brewing wastes can be used to generate biogas for various applications, the obtained results can help Tanzanian Breweries Company Ltd (TBL) to develop future plans for the exploitation of yeast extracted from their factories in various zones across the country, as well as serving as a biogas energy source to provide additional benefits to the company and community.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our
area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Author have declared that no competing interests exist.

REFERENCES

